Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes

نویسندگان

  • Zhonglin Mou
  • Weihua Fan
  • Xinnian Dong
چکیده

NPR1 is an essential regulator of plant systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens. SAR induction results in accumulation of the signal molecule salicylic acid (SA), which induces defense gene expression via activation of NPR1. We found that in an uninduced state, NPR1 is present as an oligomer formed through intermolecular disulfide bonds. Upon SAR induction, a biphasic change in cellular reduction potential occurs, resulting in reduction of NPR1 to a monomeric form. Monomeric NPR1 accumulates in the nucleus and activates gene expression. Inhibition of NPR1 reduction prevents defense gene expression, whereas mutation of Cys82 or Cys216 in NPR1 leads to constitutive monomerization, nuclear localization of the mutant proteins, and defense gene expression. These data provide a missing link between accumulation of SA and activation of NPR1 in the SAR signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity

Systemic acquired resistance (SAR) is a broad-spectrum plant immune response involving profound transcriptional changes that are regulated by the coactivator NPR1. Nuclear translocation of NPR1 is a critical regulatory step, but how the protein is regulated in the nucleus is unknown. Here, we show that turnover of nuclear NPR1 protein plays an important role in modulating transcription of its t...

متن کامل

NPR1: the spider in the web of induced resistance signaling pathways.

The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are major players in the regulation of signaling networks that are involved in induced defense responses against pathogens and insects. During the past two years, significant progress has been made in understanding the function of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key regulator of systemic acquire...

متن کامل

Closing Another Gap in the Plant SAR Puzzle

NPR1 is a key regulator of the salicylic acid (SA) dependent pathogen resistance pathway in plants. In this issue of Cell, Mou and Dong demonstrate that Arabidopsis NPR1 undergoes activation from an inactive oligomer to the active monomer as a result of cellular redox changes induced by SA during systemic acquired resistance.

متن کامل

Systemic acquired resistance: turning local infection into global defense.

Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis...

متن کامل

Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant.

In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2003